• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • News
    • Officers and Committees
    • Staff
    • Bylaws
    • Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • AI for Humanity Award
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • Partnerships
    • Resources
    • Mailing Lists
    • Past Presidential Addresses
    • AAAI 2025 Presidential Panel on the Future of AI Research
    • Presidential Panel on Long-Term AI Futures
    • Past Policy Reports
      • The Role of Intelligent Systems in the National Information Infrastructure (1995)
      • A Report to ARPA on Twenty-First Century Intelligent Systems (1994)
    • Logos
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • EAAI
    • HCOMP
    • IAAI
    • ICWSM
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
    • Contribute
    • Order Proceedings
  • aaai-icon_ai-magazine-line-yellowAI Magazine
  • MembershipMembership
    • Member Login
    • Chapters

  • Career CenterAI Jobs
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

  • Twitter
  • Facebook
  • LinkedIn
Home > Proceedings / Proceedings of the AAAI Conference on Artificial Intelligence, 32

Attention-based Belief or Disbelief Feature Extraction for Dependency Parsing

March 15, 2023

Authors

Haoyuan Peng

Fudan University


Lu Liu

Fudan University


Yi Zhou

Fudan University


Junying Zhou

Fudan University


Xiaoqing Zheng

Fudan University


Published:

2018-02-08

Proceedings:

Proceedings of the AAAI Conference on Artificial Intelligence, 32

Volume

Issue:

Thirty-Second AAAI Conference on Artificial Intelligence 2018

Track:

Main Track: NLP and Machine Learning

Downloads:

Download PDF

Abstract:

Existing neural dependency parsers usually encode each word in a sentence with bi-directional LSTMs, and estimate the score of an arc from the LSTM representations of the head and the modifier, possibly missing relevant context information for the arc being considered. In this study, we propose a neural feature extraction method that learns to extract arc-specific features. We apply a neural network-based attention method to collect evidences for and against each possible head-modifier pair, with which our model computes certainty scores of belief and disbelief, and determines the final arc score by subtracting the score of disbelief from the one of belief. By explicitly introducing two kinds of evidences, the arc candidates can compete against each other based on more relevant information, especially for the cases where they share the same head or modifier. It makes possible to better discriminate two or more competing arcs by presenting their rivals (disbelief evidence). Experiments on various datasets show that our arc-specific feature extraction mechanism significantly improves the performance of bi-directional LSTM-based models by explicitly modeling long-distance dependencies. For both English and Chinese, the proposed model achieve a higher accuracy on dependency parsing task than most existing neural attention-based models.

DOI:

10.1609/aaai.v32i1.12005


AAAI

Thirty-Second AAAI Conference on Artificial Intelligence 2018


ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)


Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.

Topics: AAAI

Primary Sidebar

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT